вва 66511

THE INACTIVATION OF RIBONUCLEASE A BY $Fe^{2+} + H_2O_2$ (FENTON'S REAGENT)

CARMELO J. DELGADO* AND EVELYN SLOBODIAN

New York University Medical Center, Department of Radiology, New York, N.Y. 10016 (U.S.A.)

```
(Received July 26th, 1971)
(Revised manuscript received November 1st, 1971)
```

SUMMARY

Ribonuclease A (ribonucleate pyrimidine-nucleotido-2'-transferase (cyclizing), EC 2.7.7.16) was treated with Fe²+ and $\rm H_2O_2$ (Fenton's Reagent), a chemical source of hydroxyl radicals (OH·). $\rm H_2O_2$ alone had little or no effect on ribonuclease A activity at low $\rm H_2O_2/ribonuclease$ A molar excesses. As the molar ratio increased ($\rm H_2O_2/ribonuclease$ A > 100) ribonuclease A was inactivated by $\rm H_2O_2$; the magnitude of this effect increased with increase in $\rm H_2O_2$ concentration and was enhanced with time. Fe²+ and Fe³+ alone had no effect on ribonuclease A activity.

In an attempt to isolate the $OH \cdot$ effect, ribonuclease A was inactivated by Fe^{2+} and H_2O_2 using a minimum excess of H_2O_2 and very short reaction time. Inactivation was a function of Fe^{2+} concentration and was attributed to hydroxyl radicals. There was a nonlinear but reproducible relationship between molar ratio Fe^{2+} /ribonuclease A and degree of enzymic inactivation.

INTRODUCTION

On the basis of numerous studies of the inactivation of enzymes by ionizing radiation, it has been concluded that inactivation in dilute solutions is brought about by the "indirect" mechanism, that is, by the intermediate formation of free radicals from water^{1–6}. In an attempt to mimic the effects of ionizing radiation, several experiments have been conducted using chemically generated free radicals to inactivate enzymes^{1,7–9}.

Collinson et al.⁸ and Slobodian et al.⁹ have used Fenton's reagent (Fe²⁺ + H₂O₂), a chemical source of hydroxyl radicals¹⁰, to inactivate ribonuclease. Reactions A, B and C illustrate the production of OH· and two of the side reactions which can influence the availability of OH· for reaction with a substrate S:

$$\begin{array}{ll} \operatorname{Fe^{2+}} + \operatorname{H_2O_2} \to \operatorname{Fe^{3+}} + \operatorname{OH^-} + \operatorname{OH} \cdot & \text{(A)} \\ \operatorname{Fe^{2+}} + \operatorname{OH} \cdot \to \operatorname{Fe^{3+}} + \operatorname{OH^-} & \text{(B)} \\ \operatorname{H_2O_2} + \operatorname{OH} \cdot \to \operatorname{H_2O} + \operatorname{HO_2} \cdot & \text{(C)} \end{array}$$

 $[\]mbox{\ensuremath{^{\star}}}$ Present address: Schering Corporation, Department of Molecular Biology, Bloomfield, N.J. 07003.

At low H_2O_2/Fe^{2+} ratios only steps A and B occur; high H_2O_2/Fe^{2+} ratios favor Step C^{11} . Thus, the concentration of reactants determines the efficiency of $OH \cdot$ capture by a substrate S. Depending on conditions, some effects on S may not be due to $OH \cdot$ but to other reactive species, such as $HO_2 \cdot$ and $H_2O_2 \cdot$

Accordingly, in order to establish reproducible and optimum conditions for the reaction of $OH \cdot$ with ribonuclease A, a study was made of the effects of different concentrations of Fe^{2+} and H_2O_2 on ribonuclease A activity.

MATERIALS AND METHODS

Ribonuclease A (ribonucleate pyrimidine nucleotido-2'-transferase (cyclizing), EC 2.7.7.16) was supplied by Worthington Biochemicals as a 1% solution in phosphate buffer. Ribonuclease A was desalted and lyophilized¹²; water solutions of the enzyme were adjusted to pH 6. The ε_M at 278 nm was 9600 and the $A_{255~\rm nm}/A_{278~\rm nm}$ ratio was 0.395. Yeast ribonucleic acid was obtained from Nutritional Biochemicals and was dialyzed before use. FeSO₄ and 30% H_2O_2 were obtained from Merck; solutions were freshly prepared using glass-distilled water. Bio-Gel P-2 was obtained from Bio-Rad Co.; the resin was swelled in 50 mM NaCl and a column 2.5 cm × 12 cm was poured from a slurry of the resin. Ribonuclease A activity was measured by a modified acid soluble nucleotide assay¹². Protein concentration was determined by the Biuret method.

RESULTS

The data in Table I show that H_2O_2 alone had little or no effect on ribonuclease A activity, at H_2O_2 /ribonuclease A molar excesses of 100 or less, during the first hour of incubation. Higher H_2O_2 /ribonuclease A molar ratios caused inactivation and the effect was enhanced with time. A 63% active protein sample, isolated after a 24-h incubation period with an H_2O_2 /ribonuclease A molar ratio of 100, had an elevated absorption spectrum: ε_M at 278 nm was 11 250, and the ratio $A_{255~\rm nm}/A_{278~\rm nm}$ was 0.560.

TABLE I EFFECT OF H_2O_2 AND INCUBATION TIME ON RIBONUCLEASE A ACTIVITY Ribonuclease A (750 μ M) was treated with 10 to 1000 times molar excesses of H_2O_2 and stored in the dark; at intervals, aliquots were taken and diluted 500-fold for assay.

H ₂ O ₂ ribonuclease A molar ratio	Residual enzymic activity (% of original)						
	15 min	30 min	60 min	100 min	225 min	24 h	
10	100		100		100		
20	100			100			
100	96				70	63	
150		85	75		·		
390	88			65			
500	80			54			
780	70			36		8	
1000	79				34	o	

Biochim. Biophys. Acta, 268 (1972) 121-124

Since Fe²⁺ and Fe³⁺ alone have no effect on ribonuclease A activity, attempts were made to isolate the OH· effect by using a minimal excess of H_2O_2 and limiting the incubation time to 10 min in the presence of changing Fe²⁺/ribonuclease A molar excesses.

Fig. 1 shows the inactivation of ribonuclease A by $FeSO_4$ and H_2O_2 . About a 9-fold molar excess of Fe^{2+} to ribonuclease A was needed to cause 90–100% loss of activity. Curves I and II refer to the same purified enzyme preparation, but in Curve II the sample was treated with alternate equimolar aliquots of $FeSO_4$ and H_2O_2 in a stepwise fashion, instead of the usual one-step mode.

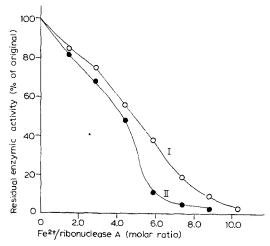


Fig. 1. Inactivation of ribonuclease A by Fe²⁺ + $\rm H_2O_2$. Residual enzymic activity (per centage of original) is plotted against the molar ratio Fe²⁺/ribonuclease A. The enzyme was treated with 2--10 times molar excesses of FeSO₄, followed by a 2-fold molar excess of $\rm H_2O_2$ to Fe²⁺, and stored in the dark. After 10 min, the sample was purified by rapid gel filtration using Bio-Gel P-2 (50 mM NaCl eluant) and the isolated protein fraction assayed. I (300 μ M) and II (250 μ M) were Worthington Ribonuclease A; I was inactivated using the usual procedure but II was treated with alternate equimolar aliquots of FeSO₄ and H₂O₂, in a step-wise fashion.

TABLE II $\label{eq:table_effect} \text{ for H_2O_2 concentration on the inactivation of ribonuclease A by Fe^{2+} + H_2O_3 }$

Fe ²⁺ ribonuclease A* molar ratio	H_2O_2/rib onuclease A^* molar ratio	Reaction time (min)	Residual enzymic activity (% of original)	
1.7	3.3	10	89	
1.7	150.0	1080	47	
2.0	60.0	10	83	
2.0	60.0	200	76	
2.6	5.0	10	82	
2.6	5.0	200	81	
5.0	10.0	18	30	
5.0	100.0	18	17	
5.0	500.0	18	io	

^{*} Ribonuclease A concentration was 700 µM.

Under the conditions of limited H₂O₂ excess used, ribonuclease A inactivation was a function of the amount of Fe²⁺ used. However, as expected, use of much higher H₂O₂ concentrations and longer incubation periods, enhanced inactivation as shown in Table II.

DISCUSSION

The finding of little or no H₂O₂ effect at low H₂O₂ concentrations is in accord with earlier findings on ribonuclease A8,9. The H₂O₂ effect observed at higher molar excesses of H₂O₂/ribonuclease A is a slow, time-dependent reaction, in contrast to the hydroxyl radical effect, which is rapid and completed within a few minutes. It is concluded that under the conditions used (minimum H₂O₂ excess and 10 min reaction time), inactivation by Fe2+ and H2O2 was primarily due to hydroxyl radicals. The probability of HO₂· participation was minimal, since HO₂· is formed only at high H_2O_2/Fe^{2+} ratios (Eqn. C).

Use of excessive H₂O₂ enhanced inactivation; the effect was time dependent (Table II) and was thus probably due to the additive effects of H_2O_2 and hydroxyl radicals. The step-wise reaction (Curve II, Fig. 1), which minimized scavenging of $OH \cdot by excess Fe^{2+} or H_2O_2$, was more efficient.

The reaction curves in Fig. I were generally reproducible; the survey of a broad range of activities made it possible, in subsequent experiments with different ribonuclease A samples, to approximate any desired degree of inactivation by referring to Fig. 1.

In the course of purification, it was noted that inactivated ribonuclease A complexed iron. Iron binding has also been observed with y-irradiated ribonuclease A¹³. The details of these findings will be presented in a separate report.

ACKNOWLEDGEMENT

Supported by Public Health Service Grant 1R01-EC-00072, National Center for Radiological Health.

REFERENCES

- 1 S. Okada, Arch. Biochem. Biophys., 67 (1957) 95.
- 2 W. M. Dale, in G. E. W. Wolstenholme and C. M. O'Conner, Ciba Found. Symp, Ioniz. Radiat. Cell Metab., Little Brown and Co., Boston, 1956.
- 3 E. S. G. Barron, Ann. N.Y. Acad. Sci., 59 (1956) 574.

- 4 F. Hutchinson, Science, 134 (1961) 533.
 5 L. Augenstine, Radiat. Res., 10 (1959) 89.
 6 E. S. G. Barron, S. Dickman, J. A. Muntz and T. P. Single, J. Gen. Physiol., 32 (1949) 573.
- 7 M. R. McDonald and E. C. Moore, Radiat. Res., Suppl. 2 (1955) 426.
- 8 E. Collinson, F. S. Dainton and B. Holmes, Nature, 165 (1950) 266.
- 9 E. Slobodian, M. Fleisher, W. Newman and S. Rubenfeld, Arch. Biochem. Biophys., 97 (1962)
- 10 H. J. H. Fenton, J. Chem. Soc., 65 (1894) 899.
- 11 W. G. Barb, G. H. Baxendale, P. George and H. R. Hargrove, Trans. Faraday Soc., 47 (1950)
- 12 E. Slobodian and M. Fleisher, Biochemistry, 5 (1966) 2192.
- 13 E. Slobodian, C. J. Delgado, O. Slywka and S. Rubenfeld, Abstr., 156th Natl. Am. Chem. Soc. Meet. No. 166 Biol., (1968).